G-SPOT

G-SPOT

Selasa, 29 Juni 2010

Uji Lipid

Lipid atau trigliserida merupakan bahan bakar utama hampir semua organisme disamping karbohidrat. Trigliserida adalah triester yang terbentuk dari gliserol dan asam-asam lemak.

asam lemak

Gambar 1. Struktur Asam Lemak

Asam-asam lemak jenuh ataupun tidak jenuh yang dijumpai pada trigliserida, umumnya merupakan rantai tidak bercabang dan jumlah atom karbonnya selalu genap.

Ada dua macam trigliserida, yaitu trigliserida sederhana dan trigliserida campuran. Trigliserida sederhana mengandung asam-asam lemak yang sama sebagai penyusunnya, sedangkan trigliserida campuran mengandung dua atau tiga jenis asam lemak yang berbeda. Pada umumnya, trigliserida yang mengandung asam lemak tidak jenuh bersifat cairan pada suhu kamar, disebut minyak, sedangkan trigliserida yang mengandung asam lemak jenuh bersifat padat yang sering disebut lemak.

Trigliserida bersifat tidak larut dalam air, namun mudah larut dalam pelarut nonpolar seperti kloroform, benzena, atau eter. Trigliserida akan terhidrolisis jika dididihkan dengan asam atau basa. Hidrolisis trigliserida oleh basa kuat (KOH atau NaOH) akan menghasilkan suatu campuran sabun K+ atau Na+ dan gliserol. Hidrolisis trigliserida dengan asam akan menghasilkan gliserol dan asam-asam lemak penyusunnya.

Trigliserida dengan bagian utama asam lemak tidak jenuh dapat diubah secara kimia menjadi lemak padat oleh proses hidrogenasi sebagian ikatan gandanya. Jika terkena udara bebas, trigliserida yang mengandung asam lemak tidak jenuh cenderung mengalami autooksidasi. Molekul oksigen dalam udara dapat bereaksi dengan asam lemak, sehingga memutuskan ikatan gandanya menjadi ikatan tunggal. Hal ini menyebabkan minyak mengalami ketengikan.

Kelas lipida yang lain adalah steroid dan terpen. Steroid merupakan molekul kompleks yang larut di dalam lemak dengan empat cincin yang saling bergabung. Steroid yang paling banyak adalah sterol yang merupakan steroid alkohol. Kolesterol adalah sterol utama pada jaringan hewan. Kolesterol dan senyawa turunan esternya, dengan asam lemaknya yang berantai panjang adalah komponen penting dari plasma lipoprotein.

Tujuan Percobaan

Percobaan ini bertujuan untuk mempelajari beberapa reaksi uji terhadap golongan lipid, yaitu lemak, minyak, dan kolesterol.

Bahan dan Alat

Alat yang dipakai yaitu tabung reaksi, pengaduk, bunsen, pipet tetes, pipet mohr, kertas saring, erlenmeyer dan sumbat karet.
Bahan yang dipakai pada percobaan yaitu akuades, eter, kloroform, alkohol, alkali, asam encer, minyak kelapa, lemak hewan, mentega, margarin, gliserol, asam palmitat, asam stearat, asam oleat, minyak kelapa tengik, kristal KHSO4, pereaksi iod Hubl, HCl pekat, serbuk CaCO3, kolesterol, kloroform anhidrat, asam sulfat pekat, asam asetat anhidrat dan floroglusinol.

Prosedur Percobaan

Percobaan uji kelarutan, sebanyak 2 ml pereaksi atau pelarut dimasukkan ke dalam tabung reaksi yang bersih, kemudian dibubuhkan sedikit bahan percobaan lalu dikocok kuat-kuat dan diamati kelarutannya. Pelarut yang digunakan yaitu akuades, eter, kloroform, alkohol panas, alkohol dingin, alkali dan asam encer.

Percobaan uji akrolein, kristal KHSO4 dimasukkan ke dalam tabung reaksi, kemudian ditambahkan 3-4 tetes bahan percobaan. Selanjutnya dipanaskan diatas api kecil lalu api diperbesar, diperhatikan bau akrolein yang terbentuk dibandingkan bau SO2 yang berasal dari karbohidrat. Uji ini dilakukan terhadap minyak kelapa, lemak hewan, gliserol, asam palmitat dan asam stearat.

Percobaan uji ketidakjenuhan, sebanyak 1 ml bahan percobaan dimasukkan dalam tabung bersih, lalu ditambahkan kloroform sama banyak, dikocok sampai semua bahan larut. Kemudian ditambahkan beberapa tetes pereaksi iod Hubl sambil dikocok dan diamati perubahan yang terjadi. Lakukan uji ini terhadap minyak kelapa tengik, minyak kelapa, lemak hewan, mentega, margarin, asam palmitat, asam oleat.

Percobaan uji ketengikan, erlenmeyer 100 ml diisi dengan 5 ml bahan percobaan, ditambahkan 5 ml HCl pekat, dan dicampurkan hati-hati. Selanjutnya dimasukkan serbuk CaCO3 dan segera ditutup dengan sumbat karet yang dijepitkan kertas floroglusinol sehingga kertasnya tergantung dan dibiarkan selama 10-20 menit. Kemudian warna yang timbul diamati pada kertas tersebut dan bila kertas berwarna merah muda berarti bahan tersebut tengik. Uji ini dilakukan terhadap minyak kelapa tengik, minyak kelapa, lemak hewan dan mentega.

Percobaan uji Salkowski untuk kolesterol, beberapa miligram kolesterol dimasukkan ke dalam tabung reaksi yang sudah berisi 3 ml kloroform anhidrat. Kemudian ditambahkan asam sulfat pekat dengan volume yang sama, tabung dikocok perlahan-lahan dan dibiarkan lapisan cairan terpisah, diamati warna pada lapisan tersebut.

Percobaan uji Lieberman Buchard, larutan kolesterol dan kloroform dari percobaan Salkowski ditambahkan 10 tetes asam asetat anhidrat dan 2 tetes asam sulfat pekat, kemudian dikocok perlahan-lahan dan dibiarkan beberapa menit.

Data dan Hasil Pengamatan

Tabel 1. Uji kelarutan lipid pada berbagai pelarut.

uji kelarutan lipid

Tabel 2. Hasil uji akrolein pada sampel.

hasil uji akrolein

Tabel 3. Data pengamatan uji ketidakjenuhan.

uji ketidakjenuhan

Tabel 4. Data pengamatan pada uji ketengikan.

uji ketengikan

Tabel 5. Data pengamatan uji Salkowski dan Lieberman-Buchard.

uji salkowski

Pembahasan

Pada uji kelarutan lipid, hampir semua jenis lipid, yaitu lemak dan minyak tidak larut dalam pelarut polar seperti air, namun larut dalam pelarut non polar sepertio kloroform, eter, dan benzena. Asam oleat dan gliserol larut dalam air maupun alkohol. Hal ini disebabkan karena pada gliserol dan asam oleat mempunyai kepala polar berupa gugus -OH yang dapat berikatan hidrogen dengan molekul air ataupun alkohol. Lemak hewan dan minyak kelapa tengik dapat terdispersi menjadi misel yang megubah asam-asam lemak penyusunnya menjadi sabun.

Pada hasil uji akrolein, gliserol dalam bentuk bebas atau yang terdapat dalam lemak/minyak akan mengalami dehidrasi membentuk aldehid akrilat atau akrolein. Senyawa pendehidrasi dalam uji ini adalah KHSO4 yang menarik molekul air dari gliserol. Hasil uji akrolein menunjukkan bahwa semua bahan yang diuji memberikan bau yang tajam yang diidentifikasi oleh praktikan sebagai bau akrolein. Pada teorinya, hanya gliserol dalam bentuk bebas atau yang terikat berupa senyawa yang akan membentuk akrolein, sedangkan asam-asam lemak tidak. Dalam percobaan ini asam lemak seperti asam oleat dan stearat memberikan hasil uji positif untuk akrolein. Penyebab kesalahan ini adalah kesalahan praktikan dalam mengidentifikasi bau akrolein.

Trigliserida yang mengandung asam lemak yang mempunyai ikatan rangkap dapat diadisi oleh golongan halogen. Pada uji ketidakjenuhan, pereaksi iod huble akan mengoksidasi asam lemak yang mempunyai ikatan rangkap pada molekulnya menjadi berikatan tunggal. Warna merah muda yang hilang selama reaksi menunjukkan bahwa asam lemak tak jenuh telah mereduksi pereaksi iod huble. Dari hasil uji ketidakjenuhan, asam oleat menunjukkan hasil negatif, yaitu bahwa ia mempunya uikatan rangkap pada molekulnya, sedangkan bahan lain yang diujikan menunjukkan hasil positif, yaitu tidak adanya ikatan rangkap pada molekulnya.

Ketengikan pada kebanyakan lemak atau minyak menunjukkan bahwa kebanyakan golongan trigliserida tersebut telah teroksidasi oleh oksigen dalam udara bebas. Pada uji ketengikan, warna merah muda menunjukkan bahwa bahan tersebut tengik. Warna merah muda dihasilkan dari reaksi antara floroglusinol dengan molekul oksigen yang mengoksidasi lemak/minyak tersebut. Hasil percobaan menunjukkan, dari semua bahan yang diuji, hanya minyak kelapa dan margarin yang tidak tengik. Hal-hal yang mempengaruhi ketengikan ini adalah proses penyimpanan bahan uji yang cukup lama dan kurang tertutup, sehingga berinteraksi dengan udara bebas yang menyebabkannya menjadi tengik.

Uji salkowski dan lieberman-buchard digunakan untuk mengidentifikasi adanya kolesterol. Pada uji salkowski, terbentuk cincin coklat yang menunjukkan terjadinya reaksi antara kolesterol dengan asam sulfat pekat. Warna hijau pada uji lieberman-buchard menunjukkan reaksi antara kolesterol dengan asam asetat anhidrat. Kedua uji tersebut diatas dapat digunakan untuk mengukur kadar kolesterol secara kalorimetri.

Kesimpulan

Dari hasil pengamatan yang diperoleh, lipid larut dalam pelarut organik seperti kloroform, atau eter tetapi tidak larut dalam air. Pada uji akrololein semua bahan mengandung gliserol yang membedakannya hanya intensitas bau yang ditimbulkan. Pada uji ketidakjenuhan bahan yang jenuh memberikan perubahan warna menjadi merah muda sedangkan yang tidak jenuh tetap pada warna asalnya. Minyak atau lemak yang tengik dapat dideteksi denga perubahan warna kertas menjadi merah muda. Kolesterol diuji secara kualitatif dengan uji Salkowski dan Lieberman Buchard. .

Lap. Biokim Uji Lemak/Minya

LEMBAR
PENGESAHAN

Satuan cara I (Uji Lemak/ minyak) pada praktikum mata kuliah biokimia dilakukan pada
hari : Rabu
tanggal : 20 Mei 2009
waktu : 15.30 WIB s.d 18.00 WIB
tempat : Laboratorium Pragram Studi Ilmu Kelautan kampus FPIK Universitas Diponegoro
Jl. Prof. Sudarto, SH. Tembalang Semarang.









BAB I
PENDAHULUAN
Latar Belakang

Perkembangan ilmu pengetahua dan teknologi yang telah menjerat kepada seluruh komponen sisi keberlangsungan hidup manusia tidak bisa masuk begitu saja. Dibutuhkan komitmen bersama baik pemereintah sebagai wadah penggerak utama maupun komponen masarakat yang secara langsung berhadapan untuk dapat menguasai dan memanfaatkannya. Sehingga didapat hasil yang berkesinambungan antara perkembangan ilmu pengetahuan, penemuan teknologi baru dengan daya guna yangbisa dipakai oleh masyarakat.
Atas dasar komitmen tersebut maka tidak bisa dipungkiri keberadaaan seoarang mahasiswa khususnya mahasiswa Ilmu kelautan dituntut harus memiliki dayan guna baik dalam menciptakan keilmuan dan teknologi terbaru maupun memanfaakan keilmuan dan teknologi yang sudah ada yang bisa diterapkan di lingkungan masarakat dalam cakupan kecilnya dan bangsa dalam cakupan besarnya.
Untuk mencapai komitmen tersebut di atas, maka langkah awal yang bisa dilakukan oleh seorang mahasiswa ilmu Kelautan adalah dengan mempelajari konsep keilmuan yang berkaitan erat dengan Progran Strudi Ilmu kelautan salah satunya adalah dengan melakukan satuan acara praktikum pada mata kuliah Biokimia dengan sub bahasan yang diparktikumkan adalah “ Uji Lemak / Minyak, dan Ektrasi Alginat Pada Rumpu Laut”.


Maksud dan Tujuan
Setelah melakukan praktikum Biokimia serta dengan menyusun laporan hasil praktikum diharapkan mahasiswa Ilmu Kelautan mampu :
menentukan bilangan penyabunan.
menentukan asam lemak.
menentukan uji kelarutan minyak/lemak.

















BAB II
TINJAUAN PUSTAKA

2.1. Pengertian Lemak/ Minyak
Lipid (dari kata yunani Lipos. Lemak) merupakan penyusun tumbuhan atau hewan yang dicerikan oleh sifat kelarutannya. Terutama lipid tidak bisa larut dalam air, tetapi larut dalam larutan non polar seperti eter.
(Hart, 2003)

Lemak atau minyak ialah triester dari gliserol dan disebut trigliserida. Bila minyak atau lemak dididihkan dengan alkali, kemudian mengasamkan larutan yang dihasilakan, maka akan didapatkan gliserol dan campuran asam lemak. Reaksi ini disebut penyabunan.

(Hart, 2003)

Lemak/minyak merupakan asam karboksilat/asam alkanoat jenuh alifatis (tidak terdapat ikatan rangkap C=C dalam rantai alkilnya, rantai lurus, panjang tak bercabang) dengan gugus utama –COOH dalam bentuk ester/gliserida yaitu sesuatu jenis asam lemak atau beberapa jenis asam lemak dengan gliserol suku tinggi.

(smk3ae.wordpress.com /23/05/09)

Lemak/ minyak ialah trigliserida, yaitu trimester dari dliserol. Asam lemak ialah asam yang diperoleh dari proses penyabunan lemak/ minyak.

(Hart, 2003)


Minyak / lemak merupakan lipida yang banyak terdapat di alam. Minyak merupakan senyawa turunan ester dari gliserol dan asam lemak. Struktur umumnya adalah :

CH2-O-C-R1

CH-O–C–R2

CH2–O–C–R3
R1,R2, R3 adalah gugus alkil mungkin saja sama atau juga beda. Gugus alkil tersebut dibedakan sebagai gugus alkil jenuh (tidak terdapat ikanatanrangkap) dan tidak jenuh (terdapat ikan rangkap).

(Hart, 2003)

Lemak adalah suatu gliserida dan merupakan suatu ester. Apabila ester ini bereaksi dengan basa maka akan terjadi saponifikasi yaitu proses terbentuknya sabun dengan residu gliserol. Sabun dalam air akan bersifat basa. Sabun ( R COONa atau R COOK ) mempunyai bagian yang bersifat hidrofil (- COO -) dan bagian yang bersifat hidrofob (R – atau alkil). Bagian karboksil menuju air dan menghasilkan buih (kecuali pada air sadah), sedangkan alkil (R -) menjauhi air dan membelah molekul atau kotoran (flok) menjadi partikel yang lebih kecil sehingga air mudah membentuk emulsi atau suatu lapisan film dengan kotoran. Air adalah senyawa polar sedangkan minyak adalah senyawa non polar, jadi keduanya sukar bercampur oleh karena itu emulsinya mudah pecah. Untuk memantapkan suatu emulsi perlu ditambahkan suatu zat emulgator atau zat pemantap, antara lain ;




1. Ca Butirat, Ethanol.
2. Senyawa pembentuk sel liofil,protein, gum, dan gelatin.
3. Garam Fe, BaOH, SO4, Fe(OH)SO4, PbSO4, Fe2O3, Tanah liat, CaCO3, dll.

(smk3ae.wordpress.com /23/05/09)

Asam lemak tidak lain adalah asam alkanoat atau asam karboksilat berderajat tinggi (rantai C lebih dari 6). Karena berguna dalam mengenal ciri-cirinya, asam lemak dibedakan menjadi asam lemak jenuh dan asam lemak tak jenuh. Asam lemak jenuh hanya memiliki ikatan tunggal di antara atom-atom karbon penyusunnya, sementara asam lemak tak jenuh memiliki paling sedikit satu ikatan ganda di antara atom-atom karbon penyusunnya.
(Wikipedia Indonesia /23/05/09)

Asam lemak, bersama-sama dengan gliserol, merupakan penyusun utama minyak nabati atau lemak dan merupakan bahan baku untuk semua lipida pada makhluk hidup. Asam ini mudah dijumpai dalam minyak masak (goreng), margarin, atau lemak hewan dan menentukan nilai gizinya. Secara alami, asam lemak bisa berbentuk bebas (karena lemak yang terhidrolisis) maupun terikat sebagai gliserida.

(Wikipedia Indonesia /23/05/09)

2.2. Sifat Lemak/ Minyak
Asam lemak merupakan asam lemah, dan dalam air terdisosiasi sebagian. Umumnya berfase cair atau padat pada suhu ruang (27° Celsius). Semakin panjang rantai C penyusunnya, semakin mudah membeku dan juga semakin sukar larut.
Asam lemak jenuh bersifat lebih stabil (tidak mudah bereaksi) daripada asam lemak tak jenuh. Ikatan ganda pada asam lemak tak jenuh mudah bereaksi dengan oksigen (mudah teroksidasi). Karena itu, dikenal istilah bilangan oksidasi bagi asam lemak.
Keberadaan ikatan ganda pada asam lemak tak jenuh menjadikannya memiliki dua bentuk: cis dan trans. Semua asam lemak nabati alami hanya memiliki bentuk cis (dilambangkan dengan "Z", singkatan dari bahasa Jerman zusammen). Asam lemak bentuk trans (trans fatty acid, dilambangkan dengan "E", singkatan dari bahasa Jerman entgegen) hanya diproduksi oleh sisa metabolisme hewan atau dibuat secara sintetis. Akibat polarisasi atom H, asam lemak cis memiliki rantai yang melengkung. Asam lemak trans karena atom H-nya berseberangan tidak mengalami efek polarisasi yang kuat dan rantainya tetap relatif lurus.
Ketengikan (Ingg. rancidity) terjadi karena asam lemak pada suhu ruang dirombak akibat hidrolisis atau oksidasi menjadi hidrokarbon, alkanal, atau keton, serta sedikit epoksi dan alkohol (alkanol). Bau yang kurang sedap muncul akibat campuran dari berbagai produk ini.
(Wikipedia Indonesia /23/05/09)

2.3 . Penamaan Asam Lemak
Beberapa aturan penamaan dan simbol telah dibuat untuk menunjukkan karakteristik suatu asam lemak.
Nama sistematik dibuat untuk menunjukkan banyaknya atom C yang menyusunnya (lihat asam alkanoat). Angka di depan nama menunjukkan posisi ikatan ganda setelah atom pada posisi tersebut. Contoh: asam 9-dekanoat, adalah asam dengan 10 atom C dan satu ikatan ganda setelah atom C ke-9 dari pangkal (gugus karboksil). Nama lebih lengkap diberikan dengan memberi tanda delta (Δ) di depan bilangan posisi ikatan ganda. Contoh: asam Δ9-dekanoat.
Simbol C diikuti angka menunjukkan banyaknya atom C yang menyusunnya; angka di belakang titikdua menunjukkan banyaknya ikatan ganda di antara rantai C-nya). Contoh: C18:1, berarti asam lemak berantai C sebanyak 18 dengan satu ikatan ganda.
Lambang omega (ω) menunjukkan posisi ikatan ganda dihitung dari ujung (atom C gugus metil).
2.4. Biosintesis asam lemak
Pada daun hijau tumbuhan, asam lemak diproduksi di kloroplas. Pada bagian lain tumbuhan dan pada sel hewan (dan manusia), asam lemak dibuat di sitosol. Proses esterifikasi (pengikatan menjadi lipida) umumnya terjadi pada sitoplasma, dan minyak (atau lemak) disimpan pada oleosom. Banyak spesies tanaman menyimpan lemak pada bijinya (biasanya pada bagian kotiledon) yang ditransfer dari daun dan organ berkloroplas lain. Beberapa tanaman penghasil lemak terpenting adalah kedelai, kapas, kacang tanah, jarak, raps/kanola, kelapa, kelapa sawit, jagung dan zaitun.
Proses biokimia sintesis asam lemak pada hewan dan tumbuhan relatif sama. Berbeda dengan tumbuhan, yang mampu membuat sendiri kebutuhan asam lemaknya, hewan kadang kala tidak mampu memproduksi atau mencukupi kebutuhan asam lemak tertentu. Asam lemak yang harus dipasok dari luar ini dikenal sebagai asam lemak esensial karena tidak memiliki enzim untuk menghasilkannya.
Biosintesis asam lemak alami merupakan cabang dari daur Calvin, yang memproduksi glukosa dan asetil-KoA. Proses berikut ini terjadi pada daun hijau tumbuh-tumbuhan dan memiliki sejumlah variasi.
Kompleks-enzim asilsintase III (KAS-III) memadukan malonil-ACP (3C) dan asetil-KoA (2C) menjadi butiril-ACP (4C) melalui empat tahap (kondensasi, reduksi, dehidrasi, reduksi) yang masing-masing memiliki enzim tersendiri.
Pemanjangan selanjutnya dilakukan secara bertahap, 2C setiap tahapnya, menggunakan malonil-KoA, oleh KAS-I atau KAS-IV. KAS-I melakukan pemanjangan hingga 16C, sementara KAS-IV hanya mencapai 10C. Mulai dari 8C, di setiap tahap pemanjangan gugus ACP dapat dilepas oleh enzim tioesterase untuk menghasilkan asam lemak jenuh bebas dan ACP. Asam lemak bebas ini kemudian dikeluarkan dari kloroplas untuk diproses lebih lanjut di sitoplasma, yang dapat berupa pembentukan ikatan ganda atau esterifikasi dengan gliserol menjadi trigliserida (minyak atau lemak).
Pemanjangan lebih lanjut hanya terjadi bila terdapat KAS-II di kloroplas, yang memanjangkan palmitil-ACP (16C) menjadi stearil-ACP (18C). Enzim Δ9-desaturase kemudian membentuk ikatan ganda, menghasilkan oleil-ACP. Enzim tioesterase lalu melepas gugus ACP dari oleat. Selanjutnya, oleat keluar dari kloroplas untuk mengalami perpanjangan lebih lanjut.
(Wikipedia Indonesia /23/05/09)

2.5. Fungsi Lemak
Begituh banyak fungsi dari lemak itu sendiri, diantaranya adalah sebagai pembangun sel. Lemak adalah bagian penting dari membran yang membungkus setiap sel di tubuh kita. Tanpa membran sel yang sehat, bagian lain dari sel tidak dapat berfungsi.
Sumber energi. Lemak adalah makanan sumber energi yang paling efisien. Setiap gram lemak menyediakan 9 kalori energi, sedangkan karbohodrat dan protein memberi 4 kalori.
Melindungi organ. Banyak organ vital seperti ginjal, jantung, dan usus dilindungi oleh lemak dengan memberinya bantalan agar terhindar dari luka dan menahan agar tetap pada tempatnya.
Pembangun hormon. Lemak adalah unsur pembangun sebagian senyawa terpenting bagi tubuh, termasuk prostaglandin, senyawa semacam hormon yang mengatur banyak fungsi tubuh. Lemak mengatur produksi hormon seks.

Pembangun otak. Lemak menyediakan komponen penyusun tidak hanya bagi membran sel otak, tapi juga myelin, 'jaket' lemak yang menyelimuti tiap serat syaraf, yang membuatnya mampu menghantar pesan dengan lebih cepat.

2.6. Bilangan Penyabunan
Bilangan penyabunan adalah jumlah mg KOH yang dibutuhkan untuk menyabunkan 1 g lemak. Untuk menetralkan 1 molekul gliserida diperlukan 3 molekul alkali:
R1 C OOCH2 R1COOK HO C H2
│ + │
R1 C OOCH + 3 KOH → R2COOK + HO C H
│ + │
R3COOCH2 R3COOK HOCH2
Pada trigliserida dengan asam lemak yang rantai C-nya pendek, akan didapat bilangan penyabunan yang lebih tinggi daripada asam lemak dengan rantai C panjang. Mentega yang kadar butiratnya tinggi mempunyai bilangan penyabunan yang paling tinggi.

Bilangan Penyabunan



(Winarno, F.G. 1991)
2.7. Titrasi Redoks
Merupakan titrasi yang meliputi hamper semua reaksi oksidasi dan reduksi. Oksidasi mengacu pada setiap perubahan reaksi kimia dimana terjadi kenaikan bilangan oksidasi. Reduksi adalah penurunan biloks. Reaksi redoks dapat dilakukan untuk analisis volumetri asalkan keseimbangan yang tercapai setiap penambahan titrat dapat berlangsung dengan cepat.
(Rival. 1995)
2.8. Pengenceran
Pengenceran merupakan proses mencampur larutan pekat (konsentrasi tinggi) dengan menambah suatu pelarut, sehingga diperooleh volume akhir yang lebih besar dengan konsentrasi larutan yang lebih rendah. Pada proses ini, volume dan kemolaran berubah. Jumlah mol zat terlarut tidak berubah. Maka diperoleh persamaan:
M1 . V1 = M2 . V2
M1 : Konsentarsi awal
M2 : Konsentarasi setelah pengenceran
V1 : Volume benda
V2 : Volume setelah pengenceran
(Khopkar. 1990)

2.9. Analisa Bahan
2.9.1. Alkohol
2.9.1.1. Pegertian Alkohol
Alkohol dan eter merupakan senyawa-senyawa organik yang mengandung atom oksigen yang berikatan tunggal. Kedudukan atom oksigen didalam alkohol dan eter mirip dengan kedudukan atom oksigen yang terikat pada molekul air. Oleh karena itu dapat dikatakan struktur alkohol adalah sama dengan struktur air, dimana satu atom H pada air diganti dengan R. sedangkan struktur eter adalah sama dengan struktur air dimana kedua atom H pada air diganti dengan R.
H-O-H R-O-H R-O-R
Air Alkohol Eter
Gugus R pada alkohol dan eter dapat berbentuk alkil atau aril. Oleh karena itu, kedua golongan senyawa ini sangat luas dijumpai. Baik dari hasil sintesis maupun yang terjadi secara alami. Alkohol dan eter merupakan isomer, maksudnya alkohol dan eter yang mempunyai rumus molekul sama, tetapi mempunyai struktur yang berbeda sehingga rumus molekul umum alkohol dan eter adalah sama, yaitu C2 H2O + 2O
CH3CH3-O-H CH3-O-CH3
Metanol Dimetil eter
Bila diperhatikan metanol dan dimetil eter diatas mempunyai rumus struktur yang berbeda, tetapi rumus molekulnya sama : C2H6O.
Gugus alkil pada alkohol boleh alifatik, boleh siklik. Namun yang biasa disebut alkohol adalah yang mempunyai gugus alkil (R) alifatik. Oleh karena itu, bila dikaitkan dengan alkanci, maka penamaan alkohol adalah mirip dengan alkana, dimana akhiran pada alkana diganti dengan ol pada alkohol dumus molekul alkohol atau alkanol adalah C2H2O + 2O
(Keenan,1992)
2.9.1.2. Penggolongan Alkohol
berdasarkan struktur alkohol dapat terbagi menjadi tiga golongan yang didasarkan pada atom karbon yang mengikat gugus hidroksil :
1. Alkohol primer adalah alkohol dimana gugus hidroksil (-OH) terikat pada atom karbon yang merugikan satu atom karbon yang lain.
2. Alkohol sekunder adalah alkohol dimana gugus hidroksil (-OH) terikat pada atom karbon yang mengikat 2 atom karbon yang lain.
3. Alkohol tersier adalah alkohol dimana gugus hidroksil (-OH) terikat pada atom karbon yang mengikat tiga atom karbon yang lain.
Sifat-sifat fisika dan kimia alkohol sering kali tergantung pada penggolongan tersebut.
(Mastjah, Sabirin, dkk. 1993)
2.9.1.3. Sifat Alkohol
Sifat fisika : alkohol mendidih pada temperatur yang cukup lebih tinggi dibandingkan hidrokarbon oleh asosiasi molekul-molekul alkohol lewat ikatan hidrogen (garis putus-putus menunjukkan ikatan hidrogen Hu).
(Riduan, S. 1990)

2.9.2. HCl
Larutan yang berwarna jernih tak berwarna baunya merangsang hidung, titik didih 850 C titik beku -1100 C termasuk asam kuat.
2.9.3. Aquadest
Air murni hasil dari penyulingan memiliki titik didih1000 C titik beku 00 C rumus molekulnya dalah H2O tidak berwarna sifatnya netral, dan sebagai pelarut.
2.9.4. NaOH
Termasuk basa kuat padatan putih larut dalam air membesarkan kalor dan dapat merusak kulit.





















BAB III
METODOLOGI


3.2. Alat dan Bahan
3.2.1. Alat
Pada praktikum satua acara I (Uji Lemak/ Minyak) alat yang digunakan adalah :
Tabung Erlenmeyer
Pengaduk
Pemanas (kompor listrik)
Tabung reaksi
Pipet tetes
Alat titrasi
Gelas Ukur
Buret
Gunting


3.2.2. Bahan
Bahan yang digunakan pada satuan acara I (uji lemak/ Minyak) adalah :
1.5 gram Minyak Ikan
NaOH metanoat
Indikatir Penopillin (PP)
HCl 0,5 N
Etanol (CH3CH2OH.

3.3. Gambar dan Kegunaan
No
Nama
Gambar
Kegunaan
1
Elenmeyer

Tempat untuk mendapatkan larutan campuran Minyak ikan, NaOH metanoat,
2
Kaca Pengaduk...........

Sebagai alat untuk mendapatkan campuran larutan Minyak Ikan dan NaOH Metanoat.
3
kompor listrik

Sebagai alat pemanas
5
Pipet Tetes

alat untuk meneteskan indicator PP (Penopillin)
6
Alat titrasi

Tempat untuk melakukan titrasid dengan memasukan HCl
Sebanyak 20 ml.
7
Tabung reaksi
Tempat untuk mereaksikan dua/ lebih senyawa.
8
Gelas Ukur
Untuk mengukur volume bahan yang akan diuji.
9
Gunting
Untuk memotong/ menyobek bahan (minyak ikan).

1.5 gram Minyak Ikan
Bahan penelitian pada Praktikum Uji Lemak/ minyak.
NaOH metanoat
Bahan penelitian pada Praktikum Uji Lemak/ minyak.

Indikatir Penopillin (PP)
Bahan penelitian pada Praktikum Uji Lemak/ minyak.
10
HCl 0,5 N

Bahan penelitian pada Praktikum Uji Lemak/ minyak.

3.4. Skema Kerja
3.4.1. Menetukan bilangan penyabunan

timbang minyak ikan sebanyak 1,5 gr ;
masukan ke dalam elenmeyer;
tambahkan NaOH sebanyak 20 tetes menggunakan pipet tetes;
panaskan diatas kompor listrik selama 5 menit sambil diaduk menggunakan kaca pengaduk;
(dengan melakukan pengadukan pada saat pemansan larutan maka akan didapat kelaruatan/ reaksi kimia yang lebih cepat ketimbang tnpa dilakukan pegadukan.)
dinginkan kemudian masukan indicator PP sebanyak 2 tetes menggunakan pipet tetes kedalam elenmeyer;
(penambahan senyawa PP adalah sebagai indicator dalam proses titrasi,)
masukan HCl 0,5 N kedalam titran sebanyak 20 ml;
elenmeyer diletakan tepat di bawah titran
sambil kran titran dibuka perlahan biarkan tetesan HCl 0,5 N keluar elenmeyer digiyang-goyangkan sampai warna larutan pada elenmeyer berubah mejadi bening.
catat Volume HCl yang keluar sebagai “V1”.
Lakukan langkah di atas tanpa menggunakan minyak ikan. Kemudian catat volume HCl yang kelaur sebagai V2.
Setelah didapat V1 dan V2 kemudian lakukan penghitungan bilangan penyabunan dengan menggunakan rumus

3.4.2. Menetukan bilangan asam

timbang minyak ikan sebanyak 4 gr ;
masukan ke dalam elenmeyer;
tambahkan etanol sebanyak 20 tetes menggunakan pipet tetes;
panaskan diatas kompor listrik selama 5 menit sambil diaduk menggunakan kaca pengaduk;
(dengan melakukan pengadukan pada saat pemansan larutan maka akan didapat kelaruatan/ reaksi kimia yang lebih cepat ketimbang tnpa dilakukan pegadukan.)
dinginkan kemudian masukan indicator PP sebanyak 2 tetes menggunakan pipet tetes kedalam elenmeyer;
masukan NaOH 0,1 N kedalam titran sebanyak 20 ml;
(penambahan senyawa PP adalah sebagai indicator dalam proses titrasi,)
elenmeyer diletakan tepat di bawah titran
sambil kran titran dibuka perlahan biarkan tetesan NaOH 0,1 N keluar elenmeyer digiyang-goyangkan sampai warna larutan pada elenmeyer berubah mejadi bening.
catat Volume NaoOH yang keluar sebagai “V1”.
Lakukan langkah di atas tanpa menggunakan minyak ikan. Kemudian catat volume HCl yang kelaur sebagai V2.
Setelah didapat V1 dan V2 kemudian lakukan penghitungan bilangan penyabunan dengan menggunakan rumus








3.4.3. Uji kelarutan lemak/ minyak

Siapkan 3 buah tabung reaksi ;
Masukan alcohol pada tabung ke-1, air pada tabung ke-2, dan NaCo3 pada tabung ke-3 masih masing 20 tetes dengan menggunakan pipet tetes;
Masukan minyak ikan ke dalam setiap tabung reaksi sebanyak 1 tetes menggunakan pipet tetes;
Kocok-kocok selama 1 menit;
(dengan melakukan pengocokan ini uji kelarutan semakin sempurna karena semua senyawa yang terdapat dalam tabung akan saling bereaksi satu sama lain)
Biarkan selama 5 menit;
(dengan mendiamkan selama 5 menit, dimaksudkan untuk mendapatkan hasil akhir apakah terjadi kelarutan atau tidak).
Kemudian bandingkan dari setiap tabung reaksi. Tentukan kelarutannya.















BAB IV
HASIL DAN PEMBAHASAN

Hasil
Menentukan Bilangan Penyabunan
Setelah melakukan beberapa langkah didapat hasil sebagai berikut:
V1 (HCl) = 7.4 ml
V2 (HCl) = 6,4 ml
BM NaOH = 40
N HCl = 0,5
Berat minyak = 1,5 gram

Dengan menggunakan rumus



Didapatkan hasil penghitungan sebagai berikut
(6,4 – 7,4) x 0,5 x 40
1,5
= -13,33

Menentukan Bilangan Asam
Setelah melakukan beberapa langkah didapat hasil sebagai berikut:
V1 (HCl) = 3.9 ml
V2 (HCl) = 1,5 ml
BM NaOH = 40
N etanol = 0,1
Berat minyak = 4 gram

Dengan menggunakan rumus



Didapatkan hasil penghitungan sebagai berikut
(1,5 – 3,9) x 0,1 x 40
4
= -2,4

Uji Kelarutan Minyak dan Lemak

Setelah melakukan beberapa langkah didapat hasil sebagai berikut:
No Tabung Reaksi
Larutan
Hasil Pengamatan
1
Alkohol dan minyak ikan
Larut sebagaian (++) masih terlihat ada pemisahan antara alcohol dengan minyak ikan.
2
Air dan minyak ikan
Tidak sama sekali terjadi kelarut terlihat jelas ada gelembung gelembung minyak ikan.
3
Na2CO3
Terjadi kelarutan yang sempurana (+++) larutan menjadi koloid tidak terlihat ada pemisahan/ gelembung minyak seperti pada tabung ke-1 dan ke- 2.







Pembahasan
Menentukan Bilangan Penyabunan

Setelah melakukan langkah-langkah dalam praktikum ini, antara lain dengan mencampuran minyak ikan sebanyak 4 gram dengan etanol sebanyak 4 tetes di dalam Erlenmeyer kemudian dipanaskan setelah itu dilakukan titrasi dengan menggunakan NaOH didapat nilai titrasi sebagai V1 sebanyak 7.4 ml dan V2nya 6,4 ml. maka dengan mengunakan rumus



Didapatkan hasil penghitungan sebagai berikut
(6,4 – 7,4) x 0,5 x 40
1,5
= -13,33
Berarti bilangan penyabunan atau jumlah mg KOH yang dibutuhkan untuk menyabunkan 1 g lemak bernilai negatif (-13.33) dimana penyabunan itu sendiri didefinisikan (Hart, 2003) reaksi yang terjadi karena adanya proses pendidihan minyak/ lemak dengan senyawa alkil kemudian dilakukan pengasaman larutan yang dihasilkan yang kemudian akan didapa gliserol dan campuran asam lemak
Menentukan Bilangan Asam

Setelah melakukan beberapa langkah antara lain dengan mencampurkan 4 gram minyak ikan dengan etanol sebanyak 20 tetes di dalam erlenmeyer serta dipanaskan diatas kompor listrik selama lima menit dan setelah dingin dilakukan titrasi dengan hasil 3.9 ml volume HCl yang keluar sebagai V1. Dan dengan cara yang sama tetapi tanpa penambahan minyak ikan didapat hasil titrasi sebagai V2 sebanyak 1,5 ml. setelah didapt V1 dan V2 kemudian dilakukan penghitungan bilangan asam dengan menggunakan rumus



Didapatkan hasil penghitungan sebagai berikut
(1,5 – 3,9) x 0,1 x 40
4
= -2,4
Berarti bilangan asam yang diperoleh dari proses penyabunan pada percobaan dengan menggunakan bahan 4 gram minyak ikan, dan etanol 20 tetes kemudian dilakukan pemanasan dan titrasi dalah bernilai negative yakni (-2,4). Dimana asam lemak itu sendiri adalah asam yang diperoleh dari porses penyabunan lemak/ minyak dengan senyawa alkil.
Uji Kelarutan Minyak dan Lemak

Pada percobaan diatas, semua bahan diuji secara organoleptis yaitu uji yang meliputi panca indera, dalam hal ini adalah penglihatan. Pada uji kelarutan minyak ikan dengan air, saat minyak ikan ditambahkan sebanyak 1 tetes pada aquades (Tb. 2) minyak tidak bisa laruta dalam air karena air adalah senyawa polar, sementara minyak senyawa non polar.

Pada uji kelarutan minyak ikan dengan alkohol, saat minyak ikan ditambahkan sebanyak 1 tetes pada alcohol terjadi kelarutan tetapi tidak sempurna masih terlihat pemisahan antara minyak ikan dengan alkokoh hal ini disebabkan karena alcohol (ROH)/ (CH2OH) “R” adalah gugus alkil masih memiliki kesamaan rumus kimia dengan air (H2O). dimana pada tabung 2 (air dengan minyak) tidak terjadi kelarutan.

Sementara pada uji kelarutan minyak ikan dengan etanol (CH3CH2OH) terjadi kelarutan sempurna dibuktikan dengan terlihatnya larutan yang koloid tidak terilihat ada pemisahan. Hal ini dikarenakan etanol merupakan zat pelarut yang baik. alasan selanjutnya terlihat dari rimus kimiannya terdapat du gugus alkil (etil alcohol) sehingga apa bila terjadi reaksi gugus alkil yangpaling luar lebih mudah untuk lepas sehingga terjadila ikatan kimia

BAB V
PENUTUP
5.1 Kesimpulan
Setelah melakukan peraktikum biokimia dapat disimpulkan bahwa lemak atau minyak ialah suatu ester asam lemak dengan gliserol dan gliserol adalah suatu trihidoksi alcohol.
Dengan menggunakan rumus dibawah ini, kita bisa mengetahui bahwa melakukan penyabunan 1 gram minyak/ lemak dibutuhkan sekian gram KOH yang dibutuhkan.
Kemudian minyak atau lemak tidak bisa laruta dalam air karena air adalah senyawa polar, sementara minyak senyawa non polar, serta minyak/ lemak dapat larut apabila dicampurkan dengan senyawa etanol.
5.2. Saran
Diharapkan untuk pelaksanaan paktikum selanjutnya praktikan lebih mempersiapkan dalam penguasaan konsep raktikum, alat, serta bahan yang diperlukan dalam praktimun.




Uji Kualitatif Protein dan Asam Amino

Asam amino merupakan unit pembangun protein yang dihubungkan melalui ikatan peptida pada setiap ujungnya. Protein tersusun dari atom C, H, O, dan N, serta kadang-kadang P dan S. Dari keseluruhan asam amino yang terdapat di alam hanya 20 asam amino yang yang biasa dijumpai pada protein.

struktur molekul asam amino

Gambar 1. Struktur molekul asam amino

Dari struktur umumnya, asam amino mempunyai dua gugus pada tiap molekulnya, yaitu gugus amino dan gugus karboksil, yang digambarkan sebagai struktur ion dipolar. Gugus amino dan gugus karboksil pada asam amino menunjukkan sifat-sifat spesifiknya. Karena asam amino mengandung kedua gugus tersebut, senyawa ini akan memberikan reaksi kimia yang yang mencirikan gugus-gugusnya. Sebagai contoh adalah reaksi asetilasi dan esterifikasi. Asam amino juga bersifat amfoter, yaitu dapat bersifat sebagai asam dan memberikan proton kepada basa kuat, atau dapat bersifat sebagai basa dan menerima proton dari basa kuat.

Semua asam amino yang ditemukan pada protein mempunyai ciri yang sama, gugus karboksil dan amino diikat pada atom karbon yang sama. Masing-masing berbeda satu dengan yang lain pada gugus R-nya, yang bervariasi dalam struktur, ukuran, muatan listrik, dan kelarutan dalam air. Beberapa asam amino mempunyai reaksi yang spesifik yang melibatkan gugus R-nya.

Melalui reaksi hidrolisis protein telah didapatkan 20 macam asam amino yang dibagi berdasarkan gugus R-nya, berikut dijabarkan penggolongan tersebut : asam amino non-polar dengan gugus R yang hidrofobik, antara lain Alanin, Valin, Leusin, Isoleusin, Prolin, Fenilalanin, Triptofan dan Metionin. Golongan kedua yaitu asam amino polar tanpa muatan pada gugus R yang beranggotakan Lisin, Serin, Treonin, Sistein, Tirosin, Asparagin dan Glutamin. Golongan ketiga yaitu asam amino yang bermuatan positif pada gugus R dan golongan keempat yaitu asam amino yang bermuatan negatif pada gugus R. Dari ke-20 asam amino yang ada, dijumpai delapan macam asam amino esensial yaitu valin, leusin, Isoleusin, metionin, Fenilalanin, Triptofan, Treonin, dan Lisin. Asam amino essensial ini tidak bisa disintesis sendiri oleh tubuh manusia sehingga harus didapatkan dari luar seperti makanan dan zat nutrisi lainnya.

Tujuan Percobaan

Percobaan ini bertujuan untuk mempelajari beberapa reaksi uji terhadap asam amino dan protein.

Bahan dan Alat

Alat-alat yang digunakan adalah tabung reaksi, gelas piala, pipet tetes, pipet Mohr, kertas saring, corong, dan penangas air. Sementara bahan-bahan yang digunakan adalah albumin, gelatin, kasain, pepton, fenol, pereaksi millon, pereaksi Hopkins cole, pereaksi biuret, ninhidrin, H2SO4, NaOH, HNO3, CuSO4, HgCl2, AgNO3, (NH4)2SO4, HCl, Pb-asetat, etanol, asam asetat, dan buffer asetat pH 4,7.

Prosedur Percobaan

Uji Millon. Sebanyak 5 tetes pereaksi Millon ditambahkan ke dalam 3 mL larutan protein, dipanaskan. Uji dilakukan terhadap larutan albumin 2%, gelatin 2%, kasein 2%, pepton 2%, dan fenol 2%.

Uji Hopkins-Cole. Sebanyak 2 mL larutan protein dicampur dengan pereaksi Hopkins-Cole dalam tabung reaksi. Ditambahkan 3 mL H2SO4 pekat melalui dinding tabung sehingga membentuk lapisan dari cairan. Didiamkan, setelah beberapa detik akan terbentuk cincin violet (ungu) pada pertemuan kedua lapisan cairan, apabila positif mengandung triptofan. Uji dilakukan terhadap larutan albumin 2%, gelatin 2%, kasein 2%, dan pepton 2%.

Uji Ninhidrin. Sebanyak 0.5 mL larutan ninhidrin 0.1% ditambahkan ke dalam 3 mL larutan protein. Dipanaskan selama 10 menit, diamati perubahan warna yang terjadi. Uji dilakukan terhadap larutan albumin 0.02%, gelatin 0.02%, kasein 0.02%, dan pepton 0.02%.

Uji belerang. Sebanyak 2 mL larutan protein ditambah 5 mL NaOH 10%, dipanaskan selama 5 menit. Kemudian ditambah 2 tetes larutan Pb-asetat 5%, pemanasan dilanjutkan, diamati warna yang terjadi. Uji dilakukan terhadap larutan albumin 0.02%, gelatin 0.02%, kasein 0.02%, dan pepton 0.02%.

Uji Xanthoproteat. Sebanyak 2 mL larutan protein ditambahkan 1 mL HNO3 pekat, dicampur, kemudian dipanaskan, diamati timbulnya warna kuning tua. Didinginkan, ditambahkan tetes demi tetes larutan NaOH pekat sampai larutan menjadi basa. Diamati perubahan yang terjadi. Uji dilakukan terhadap larutan albumin 2%, gelatin 2%, kasein 2%, pepton 2%, dan fenol 2%.

Uji Biuret. Sebanyak 3 mL larutan protein ditambah 1 mL NaOH 10% dan dikocok. Ditambahkan 1-3 tetes larutan CuSO4 0.1%. Diamati timbulnya warna.

Pada pengendapan protein oleh logam, oleh garam, oleh alkohol, uji koagulasi dan denaturasi protein. Kedalam 3 ml albumin ditambahkan 5 tetes larutan HgCl2 2%, percobaan diulangi dengan larutan Pb-asetat 5%, dan AgNO3 5%. Sepuluh ml larutan protein dijenuhkan dengan amonium sulfat yang ditambahkan sedikit demi sedikit, kemudian diaduk hingga mencapai titik jenuh dan disaring. Lalu diuji kelarutannnya dengan ditambahkan air, untuk endapan diuji dengan pereaksi Millon dan filtrat dengan pereaksi biuret. Ditambahkan 2 tetes asam asetat 1 M ke dalam tabung yang berisi 5 ml larutan protein, kemudian tabung tersebut diletakkan dalam air mendidih selama 5 menit. Lalu diambil endapan dengan batang pengaduk, untuk endapan diuji kelarutannya dengan air , sementara endapan dengan pereaksi Millon. Disiapkan 3 tabung reaksi, tabung pertama diisi campuran sebagai berikut ; 5 ml larutan albumin, 1 ml HCl 0,1 M dan 6 ml etanol 95%. Ke dalam tabung kedua dimasukkan5 ml larutan albumin, 1 ml NaOH 0,1 M dan 6 ml etanol 95%. Ke dalam tabung ketiga 5 ml larutan albumin, 1 ml buffer asetat ph 4,7 dan 6 ml etanol 95%.

Pada percobaan denaturasi protein siapkan 3 tabung reaksi, tabung reaksi pertama diisi 9 ml larutan albumin dan 1ml HCl 0,1 M, tabung reaksi kedua 9 ml larutan albumin dan 1 ml NaOH 0,1 M dan kedalam tabung reaksi ketiga ditambahkan hanya 1 ml buffer asetat pH 4,7.

Data dan Hasil Pengamatan

Tabel 1. berbagai uji kualitatif pada beberapa larutan protein

uji kualitatif protein

Keterangan:
(-) = uji negatif
(+) = uji positf (Millon: larutan berwarna merah, terbentuk garam merkuri dari tirosin yang ternitrasi; Hopkins-Cole: terbentuk cincin violet, adanya triptofan; Ninhidrin: terbentuk warna biru, khusus untuk prolin dan hidroksiprolin berwarna kuning; Belerang: terbentuk garam PbS berwarna hitam; Xanthoproteat: terbentuk warna kuning tua, adanya gugus benzena; dan Biuret: terbentuk warna violet).

Tabel 2. Pengaruh penambahan logam berat pada albumin

pengaruh penambahan logam berat

Keterangan: (+) = terbentuk endapan

Tabel 3. Pengendapan protein oleh garam (NH4)2SO4

pengendapan protein oleh garam

Tabel 4. Uji Koagulasi pada protein

uji koagulasi pada protein

Tabel 5. Pengendapan protein oleh alkohol

pengendapan protein oleh alkohol

Keterangan:

  • tabung I berisi 5 ml albumin, 1 ml HCl 0,1 M dan 6 ml etanol 95 %
  • tabung II berisi 5 ml albumin, 1 ml NaOH 0,1 M dan 6 ml etanol 95%
  • tabung III berisi 5 ml albumin, 1 ml buffer asetat pH 4,7 dan 6 ml etanol 95%
  • (+): Terbentuk endapan
  • (-): Tidak terbentuk endapan

Tabel 6. Denaturasi protein oleh penambahan berbagai senyawa

denaturasi protein oleh berbagai senyawa

Keterangan:

  • tabung I berisi 9 ml albumin, 1 ml HCl 0,1 M
  • tabung II berisi 9 ml albumin, 1 ml NaOH 0,1 M
  • tabung III berisi 1 ml buffer asetat pH 4,7
  • (+): Terbentuk endapan
  • (-): Tidak terbentuk endapan

Pembahasan

Pada berbagai uji kualitatif yang dilakukan terhadap beberapa macam protein, semuanya mengacu pada reaksi yang terjadi antara pereaksi dan komponen protein, yaitu asam amino tentunya. Beberapa asam amino mempunyai reaksi yang spesifik pada gugus R-nya, sehingga dari reaksi tersebut dapat diketahui komponen asam amino suatu protein.

Prinsip dari uji millon adalah pembentukan garam merkuri dari tirosin yang ternitrasi. Tirosin merupakan asam amino yang mempunyai molekul fenol pada gugus R-nya, yang akan membentuk garam merkuri dengan pereaksi millon. Dari hasil percobaan, diketahui bahwa protein albumin dan kasein mengandung Tirosin sebagai salah asam amino penyusunnya, sedangkan gelatin dan pepton tidak. Fenol dalam hal ini digunakan sebagai bahan percobaan karena Tirosin memiliki molekul fenol pada gugus R-nya. Di sini, uji terhadap fenol negatif, walaupun secara teori tidak. Alasan yang mungkin untuk hal ini adalah kesalahan praktikan dalam bekerja.

Pada uji Hopkins cole, uji positif ditunjukkan oleh albumin, gelatin, kasein, dan pepton, dengan ditunjukkan oleh adanya cincin berwarna ungu. Uji ini spesifik untuk protein yang mengandung Triptofan. Triptofan akan berkondensasi dengan aldehid bila ada asam kuaat sehngga membentuk cincin berwarna ungu.

Protein yang mengandng sedikitnya satu gugus karboksil dan gugus asam amino bebas akan bereaksi dengan ninhidrin membentuk persenyawaan berwarna. Uji ini bersifat umum untuk semua asam amino, dan menjadi dasar penentuan kuantitatif asam amino. Pada uji ini, hanya kasein yang menunjukkan uji negatif terhadap ninhidrin. Hal ini disebabkan karena pada kasein tidak mengandung sedikitnya satu gugus karboksil dan amino yang terbuka.

Sistein dan Metionin merupakan asam amino yang mengandung atom S pada molekulnya.. Reaksi Pb-asetat dengan asam-asam amino tersebut akan membentuk endapan berwarna kelabu, yaitu garam PbS. Penambahan NaOH dalam hal ini adalah untuk mendenaturasikan protein sehingga ikatan yang menghubungkan atom S dapat terputus oleh Pb-asetat membentuk PbS. Dari semua bahan yang diuji, hanya albumin yang membentuk endapan PbS, sehingga dapat disimpulkan albumin mengandung Sistein ataupun Metionin.

Inti benzena dapat ternitrasi oleh asam nitrat pekat menghasilkan turunan nitrobenzena. Fenilalanin, Tirosin, dan Triptofan yang mengandung inti benzena pada molekulnya juga mengalami reaksi dengan HNO3 pekat. Untuk perbandingan, dapat ditunjukkan oleh fenol yang bereaksi membentuk nitrobenzena. Hasil uji menunjukkan bahwa dari semua bahan, hanya kasein yang tidak mengandung asam amino yang mempunyai inti benzena pada molekulnya. Tetapi hal ini patut dipertanyakan, karena dari data-data yang diperoleh pada uji millon dan uji Hopkins cole, kasein mengandung tirosin dan triptofan. Salah satu alasan yang mungkin adalah karena kesalahan kerja praktikan dalam mengamati warna yang terbentuk selama reaksi.

Pada uji biuret, semua protein yang diujikan memberikan hasil positif. Biuret bereaksi dengan membentuk senyawa kompleks Cu dengan gugus -CO dan -NH pada asam amino dalam protein. Fenol tidak bereaksi dengan biuret karena tidak mempunyai gugus -CO dan -NH pada molekulnya.

Protein yang tercampur oleh senyawa logam berat akan terdenaturasi. Hal ini terjadi pada albumin yang terkoagulasi setelah ditambahkan AgNO3 dan Pb-asetat. Senyawa-senyawa logam tersebut akan memutuskan jembatan garam dan berikatan dengan protein membentuk endapan logam proteinat. Protein juga mengendap bila terdapat garam-garam anorganik dengan konsentrasi yang tinggi dalam larutan protein. Berbeda dengan logam berat, garam-garam anorganik mengendapkan protein karena kemampuan ion garam terhidrasi sehingga berkompetisi dengan protein untuk mengikat air. Pada percobaan, endapan yang direaksikan dengan pereaksi millon memberikan warna merah muda, dan filtrat yang direaksikan dengan biuret berwarna biru muda. Hal ini berarti ada sebagian protein yang mengendap setelah ditambahkan garam.

Pada uji koagulasi, endapan albumin yang terjadi setelah penambahan asam asetat, bila direaksikan dengan pereaksi millon memberikan hasil positif. Hal ini menunjukkan bahwa endapan tersebut masih bersifat sebagai protein, hanya saja telah terjadi perrubahan struktur tersier ataupun kwartener, sehingga protein tersebut mengendap. Perubahan struktur tesier albumin ini tidak dapat diubah kembali ke bentuk semula, ini bisa dilihat dari tidak larutnya endapan albumin itu dalam air.

Pada uji pengendapan oleh alkohol, hanya tabung-tabung yang mengandung asam (ber-pH rendah) yang menunjukkan pengendapan protein. Pada protein, ujung C asam amino yang terbuka dapat bereaksi dengan alkohol dalam suasana asam membentuk senyawa protein ester. Pembentukan ester ini ditunjukkan oleh adanya endapan yang terbentuk.
Protein akan terdenaturasi atau mengendap bila berada pada titik isolistriknya, yaitu pH dimana jumlah muatan positif sama dengan jumlah muatan negatifnya. Pada uji denaturasi, protein yang dilarutkan dalam buffer asetat pH 4,7 menunjukkan adanya endapan. Protein yang dilarutkan dalam HCl maupun NaOH, keduanya tidak menunjukkan adanya pengendapan, namun setelah ditambahkan buffer asetat dengan volume berlebih, protein pun mengendap hal ini menunjukkan bahwa protein albumin mengendap pada titik isolistriknya, yaitu sekitar pH 4,7.

Kesimpulan

Protein dan asam amino memberikan reaksi yang bersifat khas, bukan hanya bagi gugus amino dan gugus karboksil bebas, tetapi juga bagi gugus R yang terkandung di dalamnya. Protein dapat bereaksi dengan pereaksi-pereaksi lain seperti juga asam amino yang menjadi penyusunnya. Protein dapat mengendap atau terdenaturasi oleh logam berat, garam-garam anorganik, rusaknya struktur tersier dan kwartener, serta karena berada pada titik isolistriknya.

Analisisis karbohidrat

§ Pengertian Karbohidrat

Secara sederhana dapat diartikan bahwa karbohidrat ialah suatu senyawa yang terdiri dari molekul-molekul karbon (C), hydrogen (H) dan oksigen (O) atau karbon dan hidrat (H2O) sehingga dinamaka karbo-hidrat. Dalam tumbuhan senyawa ini dibentuk melaui proses fotosintesis antara air (H2O) dengan karbondioksida (CO2) dengan bantuan sinra matahari (UV) menghasilkan senyawa sakarida dengan rumus (CH2O)n.

§ Fungsi Karbohidrat

Ada banyak fungsi dari karbohidrat dalam penerapannya di industri pangan, farmasi maupun dalam kehidupan manusia sehari-hari. Diantara fungsi dan kegunaan itu ialah :

a. Sebagai sumber kalori atau energi

b. Sebagai bahan pemanis dan pengawet

c. Sebagai bahan pengisi dan pembentuk

d. Sebagai bahan penstabil

e. Sebagai sumber flavor (karamel)

f. Sebagai sumber serat

§ Klasifikasi Karbohidrat

Karbohidrat dapat digolongan menjadi dua (2) macam yaitu karbohidrat sederhana dengan karbohidrat komplek atau dapat pula menjadi tiga (3) macam, yaitu :

a. Monosakarida (karbohidrat tunggal)

Kelompok monosakarida dibedakan menjadi dua (2) macam, yaitu pentosa yang tersusun dari lima (5) atom karbon (arabinosa, ribose, xylosa) dan heksosa yang tersusun dari enam (6) atom karbon (fruktosa/levulosa, glukosa, dan galaktosa).

Struktu glukosa dan fruktosa digunakan sebagai dasar untuk membedakan antara gula reduksi dan gula non-reduksi. Penamaan gula reduksi ialah didasarkan pada adanya gugus aldehid (–CHO pada glukosa dan galaktosa) yang dapat mereduksi larutan Cu2SO4 membentuk endapan merah bata. Adapun gula non-reduksi ialah gula yang tidak dapat mereduksi akibat tidak adanya gugus aldehid seperti pada fruktosa dan sukrosa/dektrosa yang memiliki gugus keton (C=O).

D-Glukosa (Fischer) D-Glukosa (Haworth)

b. Oligosakarida (tersusun dari beberapa monosakarida)

Kelompok ini terdiri dari banyak jenis, seperti disakarida, trisakarida, tetrasakarida, dll. Namun paling banyak dipelajari ialah kelompok disakarida yang terdiri dari maltosa, laktosa dan sukrosa (dekstrosa). Dua dari jenis disakarida ini termasuk gula reduksi (laktosa dan maltosa) sedangkan sukrosa tidak termasuk gula reduksi (nonreducing).

c. Polisakarida (tersusun lebih dari 10 monosakarida)

Kelompok ini terdiri dari tiga (3) jenis yaitu :

1. Homopolisakarida

Yaitu polisakarida yang tersusun atas satu jenis dari monosakarida yang diikat oleh ikatan glikosida, seperti galactan, mannan, fructosans, dan glucosans (cellulose, dextrin, glycogen, dan starch/pati)

2. Heteropolisakarida

3. Polisakarida mengandung N (chitin)

§ Pengujian Karbohidrat

a. Uji Kualitatif

Pengujian ini dapat dilakukan dengan dua (2) macam cara, yaitu; pertama menggunakan reaksi pembentukan warna dan yang kedua menggunakan prinsip kromatografi (TLC/Thin Layer Cromatograpgy, GC/Gas Cromatography, HPLC/High Performance Liquid Cromatography). Dikarenakan efisiensi pengujian, pada umumnya untuk pengujian secara kualitatif hanya digunakan prinsip yang pertama yaitu adanya pembentukan warna sebagai dasar penentuan kandungan karbohidrat dalam suatu bahan. Sedikitnya ada tujuh (7) macam reaksi pembentukan warna, yaitu :

1. Reaksi Molisch

KH (pentose) + H2SO4 pekat à furfural à + a naftol à warna ungu

KH (heksosa) + H2SO4 pekat à HM-furfural à + a naftol à warna ungu

Kedua macam reaksi diatas berlaku umum, baik untuk aldosa (-CHO) maupun karbohidrat kelompok ketosa (C=O).

2. Reaksi Benedict

KH + camp CuSO4, Na-Sitrat, Na2CO3 à Cu2O endapan merah bata

3. Reaksi Barfoed

KH + camp CuSO4 dan CH3COOH à Cu2O endapan merah bata

4. Reaksi Fehling

KH + camp CuSO4, K-Na-tatrat, NaOH à Cu2O endapan merah bata

Ketiga reaksi diatas memiliki prinsip yang hampir sama, yaitu menggunakan gugus aldehid pada gula untuk mereduksi senyawa Cu2SO4 menjadi Cu2O (enpadan berwarna merah bata) setelah dipanaskan pada suasana basa (Benedict dan Fehling) atau asam (Barfoed) dengan ditambahkan agen pengikat (chelating agent) seperti Na-sitrat dan K-Na-tatrat.

5. Reaksi Iodium

KH (poilisakarida) + Iod (I2) à warna spesifik (biru kehitaman)

6. Reaksi Seliwanoff

KH (ketosa) + H2SO4 à furfural à + resorsinol à warna merah.

KH (aldosa) + H2SO4 à furfural à + resorsinol à negatif

7. Reaksi Osazon

Reaksi ini dapat digunakan baik untuk larutan aldosa maupun ketosa, yaitu dengan menambahkan larutan fenilhidrazin, lalu dipanaskan hingga terbentuk kristal berwarna kuning yang dinamakan hidrazon (osazon).

b. Uji Kuantitatif

Untuk penetapan kadar karbohidrat dapat dilakukan dengan metode fisika, kimia, enzimatik, dan kromatografi (tidak dibahas).

1. Metode Fisika

Ada dua (2) macam, yaitu :

a. Berdasarkan indeks bias

Cara ini menggunakan alat yang dinamakan refraktometer, yaitu dengan rumus :

X = [(A+B)C - BD)]

4

dimana :

X = % sukrosa atau gula yang diperoleh

A = berat larutan sampel (g)

B = berat larutan pengencer (g)

C = % sukrosa dalam camp A dan B dalam tabel

D = % sukrosa dalam pengencer B

b. Berdasarkan rotasi optis

Cara ini digunakan berdasarkan sifat optis dari gula yang memiliki struktur asimetrs (dapat memutar bidang polarisasi) sehingga dapat diukur menggunakan alat yang dinamakan polarimeter atau polarimeter digital (dapat diketahui hasilnya langsung) yang dinamakan sakarimeter.

Menurut hokum Biot; “besarnya rotasi optis tiap individu gula sebanding dengan konsentrasi larutan dan tebal cairan” sehingga dapat dihitung menggunakan rumus :

[a] D20 = 100 A

L x C

dimana :

[a] D20 = rotasi jenis pada suhu 20 oC menggunakan

D = sinar kuning pada panjang gelombang 589 nm dari lampu Na

A = sudut putar yang diamati

C = kadar (dalam g/100 ml)

L = panjang tabung (dm)

sehingga C = 100 A

L x [a] D20

2. Metode Kimia

Metode ini didasarkan pada sifat mereduksi gula, seperti glukosa, galaktosa, dan fruktosa (kecuali sukrosa karena tidak memiliki gugus aldehid). Fruktosa meskipun tidak memiliki gugus aldehid, namun memiliki gugus alfa hidroksi keton, sehingga tetap dapat bereaksi.

Dalam metode kimia ini ada dua (2) macam cara yaitu :

a. Titrasi

Untuk cara yang pertama ini dapat melihat metode yang telah distandarisasi oleh BSN yaitu pada SNI cara uji makanan dan minuman nomor SNI 01-2892-1992.

b. Spektrofotometri

Adapun untuk cara yang kedua ini menggunakan prinsip reaksi reduksi CuSO4 oleh gugus karbonil pada gula reduksi yang setelah dipanaskan terbentuk endapan kupru oksida (Cu2O) kemudian ditambahkan Na-sitrat dan Na-tatrat serta asam fosfomolibdat sehingga terbentuk suatu komplek senyawa berwarna biru yang dapat diukur dengan spektrofotometer pada panjang gelombang 630 nm.

3. Metode Enzimatik

Untuk metode enzimatis ini, sangat tepat digunakan untuk penentuan kagar suatu gula secara individual, disebabkan kerja enzim yang sangat spesifik. Contoh enzim yang dapat digunakan ialah glukosa oksidase dan heksokinase Keduanya digunakan untuk mengukur kadar glukosa.

a. Glukosa oksidase

D- Glukosa + O2 oleh glukosa oksidase à Asam glukonat dan H2O2

H2O2 + O-disianidin oleh enzim peroksidase à 2H2O + O-disianidin teroksdasi yang berwarna cokelat (dapat diukur pada l 540 nm)

b. Heksokinase

D-Glukosa + ATP oleh heksokinase à Glukosa-6-Phospat +ADP

Glukosa-6-Phospat + NADP+ oleh glukosa-6-phospat dehidrogenase à Glukonat-6-Phospat + NADPH + H+ Adanya NADPH yang dapat berpendar (memiliki gugus kromofor) dapat diukur pada l 334 nm dimana jumlah NADPH yang terbentuk setara dengan jumlah glukosa.

Analisis Karbohidra

§ Pengertian Karbohidrat

Secara sederhana dapat diartikan bahwa karbohidrat ialah suatu senyawa yang terdiri dari molekul-molekul karbon (C), hydrogen (H) dan oksigen (O) atau karbon dan hidrat (H2O) sehingga dinamaka karbo-hidrat. Dalam tumbuhan senyawa ini dibentuk melaui proses fotosintesis antara air (H2O) dengan karbondioksida (CO2) dengan bantuan sinra matahari (UV) menghasilkan senyawa sakarida dengan rumus (CH2O)n.

§ Fungsi Karbohidrat

Ada banyak fungsi dari karbohidrat dalam penerapannya di industri pangan, farmasi maupun dalam kehidupan manusia sehari-hari. Diantara fungsi dan kegunaan itu ialah :

a. Sebagai sumber kalori atau energi

b. Sebagai bahan pemanis dan pengawet

c. Sebagai bahan pengisi dan pembentuk

d. Sebagai bahan penstabil

e. Sebagai sumber flavor (karamel)

f. Sebagai sumber serat

§ Klasifikasi Karbohidrat

Karbohidrat dapat digolongan menjadi dua (2) macam yaitu karbohidrat sederhana dengan karbohidrat komplek atau dapat pula menjadi tiga (3) macam, yaitu :

a. Monosakarida (karbohidrat tunggal)

Kelompok monosakarida dibedakan menjadi dua (2) macam, yaitu pentosa yang tersusun dari lima (5) atom karbon (arabinosa, ribose, xylosa) dan heksosa yang tersusun dari enam (6) atom karbon (fruktosa/levulosa, glukosa, dan galaktosa).

Struktu glukosa dan fruktosa digunakan sebagai dasar untuk membedakan antara gula reduksi dan gula non-reduksi. Penamaan gula reduksi ialah didasarkan pada adanya gugus aldehid (–CHO pada glukosa dan galaktosa) yang dapat mereduksi larutan Cu2SO4 membentuk endapan merah bata. Adapun gula non-reduksi ialah gula yang tidak dapat mereduksi akibat tidak adanya gugus aldehid seperti pada fruktosa dan sukrosa/dektrosa yang memiliki gugus keton (C=O).

D-Glukosa (Fischer) D-Glukosa (Haworth)

b. Oligosakarida (tersusun dari beberapa monosakarida)

Kelompok ini terdiri dari banyak jenis, seperti disakarida, trisakarida, tetrasakarida, dll. Namun paling banyak dipelajari ialah kelompok disakarida yang terdiri dari maltosa, laktosa dan sukrosa (dekstrosa). Dua dari jenis disakarida ini termasuk gula reduksi (laktosa dan maltosa) sedangkan sukrosa tidak termasuk gula reduksi (nonreducing).

c. Polisakarida (tersusun lebih dari 10 monosakarida)

Kelompok ini terdiri dari tiga (3) jenis yaitu :

1. Homopolisakarida

Yaitu polisakarida yang tersusun atas satu jenis dari monosakarida yang diikat oleh ikatan glikosida, seperti galactan, mannan, fructosans, dan glucosans (cellulose, dextrin, glycogen, dan starch/pati)

2. Heteropolisakarida

3. Polisakarida mengandung N (chitin)

§ Pengujian Karbohidrat

a. Uji Kualitatif

Pengujian ini dapat dilakukan dengan dua (2) macam cara, yaitu; pertama menggunakan reaksi pembentukan warna dan yang kedua menggunakan prinsip kromatografi (TLC/Thin Layer Cromatograpgy, GC/Gas Cromatography, HPLC/High Performance Liquid Cromatography). Dikarenakan efisiensi pengujian, pada umumnya untuk pengujian secara kualitatif hanya digunakan prinsip yang pertama yaitu adanya pembentukan warna sebagai dasar penentuan kandungan karbohidrat dalam suatu bahan. Sedikitnya ada tujuh (7) macam reaksi pembentukan warna, yaitu :

1. Reaksi Molisch

KH (pentose) + H2SO4 pekat à furfural à + a naftol à warna ungu

KH (heksosa) + H2SO4 pekat à HM-furfural à + a naftol à warna ungu

Kedua macam reaksi diatas berlaku umum, baik untuk aldosa (-CHO) maupun karbohidrat kelompok ketosa (C=O).

2. Reaksi Benedict

KH + camp CuSO4, Na-Sitrat, Na2CO3 à Cu2O endapan merah bata

3. Reaksi Barfoed

KH + camp CuSO4 dan CH3COOH à Cu2O endapan merah bata

4. Reaksi Fehling

KH + camp CuSO4, K-Na-tatrat, NaOH à Cu2O endapan merah bata

Ketiga reaksi diatas memiliki prinsip yang hampir sama, yaitu menggunakan gugus aldehid pada gula untuk mereduksi senyawa Cu2SO4 menjadi Cu2O (enpadan berwarna merah bata) setelah dipanaskan pada suasana basa (Benedict dan Fehling) atau asam (Barfoed) dengan ditambahkan agen pengikat (chelating agent) seperti Na-sitrat dan K-Na-tatrat.

5. Reaksi Iodium

KH (poilisakarida) + Iod (I2) à warna spesifik (biru kehitaman)

6. Reaksi Seliwanoff

KH (ketosa) + H2SO4 à furfural à + resorsinol à warna merah.

KH (aldosa) + H2SO4 à furfural à + resorsinol à negatif

7. Reaksi Osazon

Reaksi ini dapat digunakan baik untuk larutan aldosa maupun ketosa, yaitu dengan menambahkan larutan fenilhidrazin, lalu dipanaskan hingga terbentuk kristal berwarna kuning yang dinamakan hidrazon (osazon).

b. Uji Kuantitatif

Untuk penetapan kadar karbohidrat dapat dilakukan dengan metode fisika, kimia, enzimatik, dan kromatografi (tidak dibahas).

1. Metode Fisika

Ada dua (2) macam, yaitu :

a. Berdasarkan indeks bias

Cara ini menggunakan alat yang dinamakan refraktometer, yaitu dengan rumus :

X = [(A+B)C - BD)]

4

dimana :

X = % sukrosa atau gula yang diperoleh

A = berat larutan sampel (g)

B = berat larutan pengencer (g)

C = % sukrosa dalam camp A dan B dalam tabel

D = % sukrosa dalam pengencer B

b. Berdasarkan rotasi optis

Cara ini digunakan berdasarkan sifat optis dari gula yang memiliki struktur asimetrs (dapat memutar bidang polarisasi) sehingga dapat diukur menggunakan alat yang dinamakan polarimeter atau polarimeter digital (dapat diketahui hasilnya langsung) yang dinamakan sakarimeter.

Menurut hokum Biot; “besarnya rotasi optis tiap individu gula sebanding dengan konsentrasi larutan dan tebal cairan” sehingga dapat dihitung menggunakan rumus :

[a] D20 = 100 A

L x C

dimana :

[a] D20 = rotasi jenis pada suhu 20 oC menggunakan

D = sinar kuning pada panjang gelombang 589 nm dari lampu Na

A = sudut putar yang diamati

C = kadar (dalam g/100 ml)

L = panjang tabung (dm)

sehingga C = 100 A

L x [a] D20

2. Metode Kimia

Metode ini didasarkan pada sifat mereduksi gula, seperti glukosa, galaktosa, dan fruktosa (kecuali sukrosa karena tidak memiliki gugus aldehid). Fruktosa meskipun tidak memiliki gugus aldehid, namun memiliki gugus alfa hidroksi keton, sehingga tetap dapat bereaksi.

Dalam metode kimia ini ada dua (2) macam cara yaitu :

a. Titrasi

Untuk cara yang pertama ini dapat melihat metode yang telah distandarisasi oleh BSN yaitu pada SNI cara uji makanan dan minuman nomor SNI 01-2892-1992.

b. Spektrofotometri

Adapun untuk cara yang kedua ini menggunakan prinsip reaksi reduksi CuSO4 oleh gugus karbonil pada gula reduksi yang setelah dipanaskan terbentuk endapan kupru oksida (Cu2O) kemudian ditambahkan Na-sitrat dan Na-tatrat serta asam fosfomolibdat sehingga terbentuk suatu komplek senyawa berwarna biru yang dapat diukur dengan spektrofotometer pada panjang gelombang 630 nm.

3. Metode Enzimatik

Untuk metode enzimatis ini, sangat tepat digunakan untuk penentuan kagar suatu gula secara individual, disebabkan kerja enzim yang sangat spesifik. Contoh enzim yang dapat digunakan ialah glukosa oksidase dan heksokinase Keduanya digunakan untuk mengukur kadar glukosa.

a. Glukosa oksidase

D- Glukosa + O2 oleh glukosa oksidase à Asam glukonat dan H2O2

H2O2 + O-disianidin oleh enzim peroksidase à 2H2O + O-disianidin teroksdasi yang berwarna cokelat (dapat diukur pada l 540 nm)

b. Heksokinase

D-Glukosa + ATP oleh heksokinase à Glukosa-6-Phospat +ADP

Glukosa-6-Phospat + NADP+ oleh glukosa-6-phospat dehidrogenase à Glukonat-6-Phospat + NADPH + H+ Adanya NADPH yang dapat berpendar (memiliki gugus kromofor) dapat diukur pada l 334 nm dimana jumlah NADPH yang terbentuk setara dengan jumlah glukosa.